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Abstract. In stereo matching, the correctness of stereo pairs matches, also called
confidence, is used to improve the dense disparity estimation result. In this paper,
we propose a multi-modal deep learning approach for stereo matching confidence
estimation. To predict the confidence, we designed a Convolutional Neural Net-
work (CNN), which is trained on image patches from multi-modal data, namely
the source image pairs and initial disparity maps. To the best of our knowledge,
this is the first approach reported in the literature combining multiple modality
and patch based deep learning to predict the confidence. Furthermore, we ex-
plore and compare the confidence prediction ability of multiple modality data. Fi-
nally, we evaluate our network architecture on KITTI data sets. The experiments
demonstrate that our multi-modal confidence network can achieve competitive
results while compared with the state-of-the-art methods.

1 Introduction

Stereo matching is a fundamental problem in stereo vision. For two images of dif-
ferent views on the same scene, taken by cameras with horizontal displacement, the
task of stereo matching is to find the corresponding pixels between the left and right
images. The distance between the corresponding points is called disparity and the set
of all disparities in the image is called disparity map. Despite decades of improvement,
stereo matching still suffers from various issues, such as occlusion, ambiguity and ex-
treme lighting conditions, which lead to incorrect stereo matches. In order to improve
dense disparity estimation, several methods have been proposed to rate the correctness
of matches. These methods are also called confidence measures.

According to the taxonomy proposed by Scharstein and Szeliski [1], stereo match-
ing algorithms perform the following four steps (or subset of them): 1) Matching cost
computation; 2) Cost aggregation; 3) Disparity computation/optimization and 4) Dis-
parity refinement. The framework above produce several different types of data, in-
cluding inputs and intermediate results, such as input RGB image pairs, matching cost
volumes (MCVs) and initial disparity maps (IDMs), which are achieved by directly
applying Winner Take All (WTA) strategy after matching cost computation. In early
studies of confidence measures, approaches were designed and examined to estimate
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Fig. 1: The architecture of the proposed RGBD_LFN. By given two patches of different
modalities including initial disparity map and RGB image, our goal is to estimate the
confidence to correct matches on the current center pixel of patches.

the reliability of corresponding matches in stereo matching [2, 3, 4]. From the perspec-
tive of the used data type, manually designed measures can be categorized into three
groups: 1) Confidence measures based on MCVs. In this category most approaches
are related to the minimum, the second minimum matching cost, or a combination of
them, e.g. Naive Peak Ratio (PKRN), Maximum Likehood Measure (MLM) and Left-
Right Difference (LRD). 2) Confidence measures utilizing IDMs. Can be found in this
category, approaches such as Left-Right Consistency (LRC), Variance of the Disparity
Values (VAR) and the Median Deviation of Disparity Values (MDD). 3) Confidence
measures employing source images pairs. As few approaches in this category, we give,
as example, Magnitude of the Image Gradients Measure.

Hand-crafted confidence measures such as PKRN, MLM perform well on correct
matches detection [4] but they have some weaknesses. They should be designed care-
fully with expertise and knowledge on stereo matching. Besides, most of them are only
well suited for certain challenges. For example, Matching Score Measure (MSM) is
the best choice for occlusion detection, while it has poor performance near discontinu-
ities [4].

To alleviate the weakness of separate measures, some authors [5, 6, 7, 8] focus
on feature combination approaches. Both Ensemble [5] and GCP [6] selected several
confidence measures as feature vectors and applied random forests to train a regression
classifier. After that, Park and Yoon [7] analyzed the specialty of various confidence
measures and selected the effective ones by permutation importance through a regres-
sion forest framework. Then with the feature vectors of selected measures, they trained
another random forest and used it to predict the confidence of correct correspondence.
Their experimental results proved that the proposed regression forest could effectively
select important confidence measures and their confidence estimation method outper-
formed method Ensemble [5] and GCP [6]. More recently, Poggi and Mattoccia [9]
explored hand-crafted features for streaking detection in stereo matching. They pro-



posed an ensemble classifier trained by feature vectors similar to [5, 6, 7, 8] while
achieved better results with time complexity of O(1).

Although joint features used for learning are thoughtfully formulated and selected,
it is hard to make sure that all discriminating information has been taken into consider-
ation. Recently, convolutional neural networks (CNNs) became popular in computer vi-
sion tasks because of their outstanding feature learning abilities [10, 11, 12, 13]. CNNs
were first introduced to confidence prediction of correct matches in stereo matching by
Zhong et al [14]. They proposed a siamese network [ | 5] architecture, with two weight-
shared sub-networks for both left and right image patches respectively for feature ex-
traction. Following [ 4], Seki and Pollefeys [ 16] designed a 2-channel input patches for
CNN based confidence learning. The design of input patches was inspired by left right
consistency (LRC) measure with an assumption that the consistently matched pixels are
correct. At the same time, Poggi and Mattoccia [ | 7] proposed a patch-based CNN, learn
confidence features of centre pixels by square patches from disparity maps.The exper-
imental results indicate that both methods above are more efficient than the method
proposed by Park and Yoon [7]. After that, Poggi et Mattoccia [18] proposed a deep
learning based methodology to improve the effectiveness of the current top-performing
confidence methods. Their experiments of 23 state-of-the-art confidence measures on
three datasets discovered the local consistency in confidence map and demonstrated that
this property can be learned by a deep network. Recently, Poggi et al. [19] summarized
state-of-the-art stereo confidence measures and updated their review and quantitative
evaluation based on Hu and Mordohai’s work [4].

The contribution of this paper is mainly twofold. 1) we explore the confidence pre-
diction ability of different types of data in stereo matching (e.g. source image pairs,
MCVs and IDMs); 2) propose a novel CNN method which utilizes multi-modal data,
including IDMs and referenced RGB images, as inputs. We explore and study two types
of multi-modal CNNs on detecting disparity errors in stereo matching. Experimental re-
sults prove that our multi-modal approach can reach the state-of-the-art result on both
KITTI2012 and KITTI2015 dataset.

The rest of this paper is organized as follows. Section 2 discusses how we select
input data from stereo matching procedure, then describes two types of designed net-
works. Section 3 presents experimental results of confidence accuracy on challenging
datasets and analyzes the results of different performances while comparing with other
methods. Section 4 draws the conclusion to this paper.

2 Proposed method

In this section, we will begin with the background of proposed methods. Then we
will discuss which types of stereo data can be used to train CNN networks for con-
fidence estimation. For more than one modalities, there are several ways to construct
networks and combine features. Therefore, we explore and test two kinds of models.
Besides, training details will be mentioned at the end of this section.
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Fig. 2: Confidence quality result comparison of CCNN [17] and our proposed method
on K12 Frame 99. Black pixels in (c) and (d) are considered as low confidence points.

2.1 Background

From the observation that the state-of-art confidence CNNs [17, 16] are all using
disparity maps as inputs while there are several different kinds of data available in
the stereo matching framework. In the early experiments, we trained the CNNs from
patches of each data type that mentioned in Section 1. The structure of CNNs we used
here are similar to Figure 3(a). From the results, we found that patches from both the en-
tire matching cost volumes, patches combined minimum and second minimum match-
ing cost as 2-channels almost do not have the ability to predict confidence, as these
models did not converge in training stage. However, the latter one achieves good per-
formance while producing manual features such as PKRN. We also found that CNN
trained by initial IDM patches is equipped with high ability to differentiate incorrect
matches while CNN trained by RGB image patches only have a very weak capacity.

Based on those observations, we trained a multi-modal Network to locate the error
matches in IDMs. As shown in Figure 1, for every pixel in an IDM, we extract patches
centered at current pixel both from IDM and related RGB image, then forward it to our
MN, predicting the match correctness of current pixel.

2.2 Deep Network Architecture

According to Section 2.1, the initial disparity patches with one channel and its ref-
erenced RGB image patches with three channels are considered to be the inputs of the
neural network. We explore two architectures with different fusion stages and fusion
methods.

RGB-D Early Fusion Network(RGBD_EFN): This type of network simply considers
IDM and referenced RGB image of an input pair as a 4-channel image. As shown in
Figure 3(a), the network only has one branch during feature extraction, consisting of
several convolutional and rectified linear unit(ReLU) layers. The following decision
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Fig. 3: Two architectures designed by different fusion stage. Architecture (a) is an early
fusion structure which using RGB-Disparity 4-channel patches as input. For architec-
ture (b), the features of two modalities are trained separately by two CNN branches
without sharing weight. Then, the extracted features have a late fusion and forward to a
decision network.

module consists simply of a number of fully connected layers with one output as the
feature fusion network.

RGB-D Late Fusion Network(RGBD _LFN): As shown in Figure 3(b), it contains two
sub-networks composed by convolutional layers and ReL.U layers. The sub-networks
extract feature vectors separately without sharing weights as siamese networks do, as
we want to learn specific features of input data crossing domains. After being simply
fused, the extracted feature vectors are forward propagated through several units of fully
connected layers followed by ReLLU layers. The last fully connected layer is followed by
a sigmoid criterion to normalize the final result between 0 and 1, namely our confidence
measure.

For both two networks above, each network has the fully connected (FC) layers.
These FC layers will be replaced by fully convolutional layers with 1 x 1 kernels fol-
lowing Zbontar et LeCun [20]. We take the advantage that for those fully convolutional
layers as the input size are not limited during test stage. So that we can predict the con-
fidence of a sample through single forward pass rather than predicting patch by patch
throughout the whole image. Besides, we also add paddings to all convolution layers to
keep the size of images during prediction.

2.3 Details of learning

Optimization. We train all models with a binary cross-entropy (BCE) loss term,

N
Losspcr = — Z(yz log(yi) + (1 —t) - log(1 — 4i)) (1)

i=1



where y; is the ground truth of i-th training sample, defining by the absolute difference
from IDM to ground truth disparity map, y; € {0, 1}. §; is the network output for the
i-th training sample.

All networks are trained by mini-batch stochastic gradient descent (Mini-batch
SGD) with batch-size, momentum term set to 128, 0.9 respectively. We trained for 15
epochs with the learning rate set to 0.003 at the beginning and decreased to 0.0003 at
11-th epoch. Weights are initialized by Xavier initialization method [21].

Preprecessing. During data preparation, patches size was set to 9 x 9. The number of
convolution layers is set to 4. The number of fully connected layers and decision resid-
ual blocks are set to 3. In convolution layers, filter size is set to 3 x 3 with no padding. It
is noteworthy that we just kept patches with valid non-occlusion disparity ground truth.
For labeling the training data, the ground truth of confidence was set according to the
central pixel disparity of the patch, as shown in Figure 1. Before sending to the network,
we normalized each channel of RGB images and IDMs to [0, 1].
All networks were implemented with torch7 [22] and cuDNN library [23].

3 Experiments

In this section, we introduce the challenging dataset and the evaluation methods we
used at the very beginning. Then we design two experiments to evaluate proposed algo-
rithms. In the first one, we compare the performance of the two proposed multi-modal
confidence architectures. After that, we compare our best architecture with several state-
of-the-art confidence methods. In the last experiment, we explored how training set size
influences the confidence prediction accuracy.

3.1 KITTI datasei

We evaluate the performance of our method on the KITTI 2012 (K12) dataset [24,
] and KITTT 2015 (K15) dataset [26]. K12 and K15 contain images from scenarios
with varying weather conditions of a mid-size city, including rural areas and highways.
The acquisition of K12 and K15 datasets were managed by two cameras (each of them
has two units to capture the color images and grayscale images separately) settled on the
top of a moving car, with a distance of 54 centimeters roughly. The stereo benchmark of
K12 dataset consists of 194 training and 194 test rectified image pairs with a resolution
of 1240 x 375 pixels, while the K15 dataset consists of 200 training and 200 test rectified
image pairs with the same resolution. The training sets of both datasets contain semi-
dense ground truth with sub-pixel accuracy but test sets not. Comparing with K12, K15
dataset contains more labels with dynamic objects like moving vehicles and denser
labels with reflective regions like car glasses.

The disparity ground truths of KITTI datasets range from 1 to 255. According to the
benchmark instructions, the correct estimation of a point is considered as the disparity
error is less than 3. For the stereo confidence measures, we set the pixel-wise ground
truth to 1 if the absolute differences between ground truth disparities and the initial
disparities are no more than 3. Otherwise, the confidence values are set to 0.



3.2 Evaluation methodology

In order to evaluate the performance of our methods and compare the results with
other state-of-the-art methods. We apply sparsification curves and its area under the
curve (AUC) to benchmark quantitative accuracy refer to [4, 5, 7, &]. For a confidence
map of a given method, all effective pixels (pixels with ground truth) are sorted by
descending confidence. Then the ordered pixels are divided into m equal parts (e.g,
m = 100). Each time we pick the part with the lowest confidence of them and put down
the bad pixel rate of the rest parts (bad pixel defined as differences larger than +3). In
this way, we plot the sparsification curves. In the ideal case, all pixels with incorrect
correspondence will be removed before correct ones, resulting in the optimal curves.
The area under the optimal curve, namely optimal AUC, defined as:

1 — J—
Aopt = / W =e+(1—-¢)in(l—e) )
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where ¢ presents the disparity error of current initial disparity map. Apparently, lower
AUC values indicate better ability to predict confidence.

We using Ak to evaluate the improvement of method & [18] . As shown in Equa-
tion 3, AU C,, presents the average optimal AUC value on each test dataset. Our base-
line here is CCNN [17], which presented as AUCconN-

 AUC.nn — AUC),
AR = AU Cronm = AUC oy )

By using the defined AUC value, we evaluate our proposed method on K12 and K15
datasets with two stereo matching cost methods.

— SAD(Sum of Absolute Differences): A typical stereo algorithm. The MCVs are
computed by using the absolute difference between two image intensities patches
(9 x 9) from corresponding locations.

— MC-CNN [20]:A popular deep learning stereo method. A network is trained to
calculate the matching cost by comparing the corresponding image patches. We
used the pre-trained network (trained on K12, fast version) provided by authors.

After computing MCVs by two methods above, a winner take all strategy was simply
applied to get the IDMs that we need.

3.3 Confidence Prediction Performance

We use AUC values to measure the confidence prediction abilities. First of all, for
training learning-based classifiers, we split K12 dataset with ground truth (194 frames
in total) into the training set (frames 0-93) and test set (frames 94-193). The whole K15
(frames 0-199) dataset is used as test set as suggested in [19]



Table 1: Confidence evaluation results with two matching cost algorithms on K12, K15
datasets. The first two rows are the comparison of alternative models. The following
rows are comparisons with state-of-the-art methods(CCNN [17], CCNN™* [18]). In or-
der to prove the advantages of join RGB and disparity data cues, we also add CCNN*
which used the similar structure except for the input modalities. ¢ is the average confi-
dence error rate for each test dataset.

K12 (e = 17.12%) K15 (e = 17.46%)
measure AUCY, Ay AUCY, Ay
RGBD_LFN 0.02362 28.98% 0.03208 15.13%
RGBD_EFN 0.02372 27.00% 0.03340 3.05%
CCNN* 0.02503 2.05% 0.0337 0.20%
CCNNT 0.02489 4.68% 0.03306 6.12%
CCNN 0.02514 - 0.03373 -
Optimal 0.0199 0.0228

(a) Confidence evaluation with MC-CNN matching cost

K12 (e = 36.89%) K15 (e = 32.79%)
measure AUCY Apg AUCy Apg
RGBD_LFN 0.1061 45.77% 0.0921 8.89%
RGBD_EFN 0.1073 41.03% 0.0949 -2.39%
CCNN* 0.1157 8.16% 0.0933 3.90%
CCNNT 0.1169 3.72% 0.0939 1.62%
CCNN 0.1178 - 0.0943 -
Optimal 0.0922 0.0699

(b) Confidence evaluation with SAD matching cost

Alternative Models: For figuring out which designed multi-modal architecture works
better on the confidence prediction task, we compared the proposed two multi-modal
networks. The first part of Table 1 shows the average AUC values and Ak of each archi-
tecture by using MC-CNN and SAD matching cost. We can see that both RGBD_LFN
and RGBD_EFN achieve good results on K12 dataset, while on K15 RGBD_LEF shows
better generalization ability. Finally, we chose RGBD_LEEF as it has the better perfor-
mance.

Comparisons with State-of-the-art methods: To analyze the capability of our multi-
modal method on predicting correct matches, we compared our method with two learn-



ing based methods proposed recently, CCNN [17], CCNNT [18]. Besides, we also add
a model named CCNN*, which has the same structure with CCNN but use the same
numbers of convolutional layers and fc layers as ours (CCNN: 64 conv layers, 100 fc
layers; CCNN*: 112 conv layers, 384 fc layers). Again, all methods are trained on the
same datasets mentioned above.
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Fig.4: Comparison of AUC values for 100 frames of K12 training image pairs with
SAD MCVs. AUC values of the same method are sorting in the ascending order ac-
cording to optimal AUC values. Here we selected CCNN [17] as a comparative item,
which is trained by initial disparities patches only.

Fig. 6 shows a comparison of AUC values of the state-of-the-art learning based
method CCNN and ours with SAD matching cost method on K12. AUC values of each
method are sorted by the ascending orders of optimal AUC values. The curves of both
two methods in Figure 6 wave with the similar trend to optimal AUC values. But the
gap between optimal AUC and other two becomes larger when optimal AUC values
increase. Refer to [7], it is more challenging to predict the confidence while the gap
between optimal and predicted AUC values growing. From the figure, we can see clearly
that the difference between our method and CCNN method becomes more obvious in
the ascending order of optimal AUC values. So the comparison of AUC from different
methods leads us to the conclusion that our method is more robust than CCNN.

While Comparing with other state-of-the-art methods as shown in Table 1, first of
all, we can see that our RGBD_LFN method achieves the minimum average AUC above
all. Observing the evaluation results between CCNN and CCNN*, we can find that
CCNN model with increasing parameters can not provide significant improvement. We
can also notice that our method is much better than CCNN* presented by Ay,. It means
that the improvement of our method is caused by the joint of RGB image features, rather
than the increasing of convolutional and fully connected layers. The improvement of our
method is much better than CCNN™, an upgrade version of CCNN, learned the local
consistency in confidence map produced by CCNN. This indicates that although the
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Fig.5: Comparison of AUC values for 100 frames of K12 training image pairs with
MC-CNN MCVs. AUC values of the same method are sorting in the ascending order
according to optimal AUC values. Here we selected CCNN [17] as a comparative item,
which is trained by initial disparities patches only.

leveraging information from neighborhood points can help to improve the effectiveness
of confidence measures, many contents can not be learned due to the ambiguity of
wrong disparities. For example, the texture less and repeat texture surface like walls,
sky and greenbelts, resulting to peak regions or lots of noises in disparity maps as
shown in 6, or dark places like shadows, leading to failure of matching cost calculation
(wrong and small disparity values). The disparity maps based CCNN often failed in
those regions. However, with the complement of RGB features, more information can
be used to learn the edges in such kind of areas mentioned above. Finally, our method
achieves the best performance with Both SAD and MC-CNN MCVs on K12 and K15
datasets. This indicates that our method has good generalization ability and independent
to different MCVs.

3.4 Training set size

As we are using a deep learning method, we would like to explore whether the rising
size of training data will improve the performance of confidence prediction. Hence we
trained our network on the K12 dataset with incremental training samples and calculated
average AUC values on the rest fourteen frames in K12 dataset. We use ratio described
in Equation 4 to evaluate the improved performance with the training size ranges from
20 to 180.

AUCY,

ratio = m

“
Figure 7 shows the results of our experiment. We note that the ratio decreases fast with
the growing training set size. Then curve becomes almost stable after training set size
up to 160.
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average AUC values of our method on K12 with SAD MVCs and average optimal AUC
values.



4 Conclusion

In this paper, we explored the confidence prediction potential of different modalities
and found both the initial disparity maps and the referenced RGB images have the
capabilities. Based on this discovery, we proposed a multi-modal Convolutional Neural
Network(CNN) for confidence estimation. We design and study on two architectures
with different fusion stages and fusion methods. The experimental results show that the
late fusion architecture achieves lower AUC values and has better generalization ability.
It also has better performance while compared with several state-of-the-art methods.
Overall, our approach shows the potential of feature fusion for confidence prediction in
stereo matching, which is worthwhile for further research.
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